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1.   LIST OF APPENDICES 

• Efficient Optimistic Concurrency Control in Massively Parallel B-trees with Variable 
Length Keys 

• Load Balancing in a Massively Parallel Semantic Database 

• SB2 Benchmark (Consumer Survey Database) 

• Semantic SQL 

2.   FINAL PROGRESS REPORT 

2.1. Statement of the Problem Studied 
Demands for databases with high efficiency and high throughput have led to the recent 
development of several types of database systems utilizing parallel processors. This project 
involved research aiming to improve the state of the art of highly parallel database systems. 
Both the logical properties (usability) and the physical properties (efficiency) were enhanced. 
We developed very efficient algorithms for parallel database management systems in 
semantic/object-oriented models. Our approach has several advantages over the currently 
known theory and results on database machines: 

• Unlike the current database machines based on the contemporary Relational Model of 
databases, our work is based on semantic data models (including, in the broad sense, 
object-oriented models as well as storage of multi-media data). The use of semantic 
models assures better logical properties: friendlier and more intelligent user interfaces, 
comprehensive enforcement of integrity constraints, improved database design, greater 
flexibility, and substantially shorter application programs (which reduces the 
programming effort and facilitates program verification). 

• At the physical level, the system is more efficient than existing database systems. The 
algorithms and prototype system developed are highly-efficient. In particular, the use of 
the semantic model allows better exploitation of the parallelism. 

This project focused on two problems: concurrency control and load balancing. 

2.2. Summary of the Most Important Results 

2.2.1.    Concurrency control 
We have developed an improved semantic optimistic concurrency control algorithm and a 
query optimization technique (lazy queries) that can be used in a massively parallel B-tree 
with variable-length keys. B-trees with variable-length keys can be effectively used in a 
variety of database types. In particular, we are using this B-tree structure, which also offers 
data compression, in our implementation of a semantic object-oriented DBMS. Our 
concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve 
very fine granularity in conflict detection. Our algorithm contributes smaller transaction 
conflict probability by using very fine granularity (attribute or string level granularity). We 
have proven that the algorithm ensures serializability and external consistency. Our 
algorithm uses local logical clocks and does not require physical clock synchronization.  A 
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on a server. Oracle, being tuned for one application, will not perform as well for another 
application, nor will it perform as well for the same application when users pose new types of 
ad-hoc queries. 

2.2.4.    Semantic SQL 

While not directly supported under this project, a related project supported by funding 
leveraged from this project has resulted in the adaptation of SQL (Structured Query 
Language), which is the standard language for relational databases, to semantic databases. 
The original purpose of this adaptation was to be compatible with and be able to 
communicate with relational tools. However, it turned out that the size of a typical SQL 
program for a semantic database is many times smaller than for an equivalent relational 
database. SQL offers significant benefits when used with semantic databases and although 
originally intended for relational databases, offers many advantages to the semantic model. 
We have implemented a stand-alone SQL server as well as an embedded-SQL preprocessor. 

A multi-user semantic database engine has been developed and is now in the testing 
phase. A user interface to this engine has been developed using C++ and is also in the testing 
phase. Our ODBC driver for the semantic database engine is now fully operational and 
allows SQL querying of a semantic database and interoperability with relational database 
tools such as Microsoft Access's Query-by-Example tool. Using these tools, the number of 
user keystrokes required is in correlation to the size of the generated SQL program. Since the 
SQL programs for the semantic database are substantially shorter, the third-party query tools 
are much more ergonomic with the semantic database than with the relational databases for 
which they were originally designed. 

Semantic SQL is detailed in the appendix entitled Semantic SQL. 
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Abstract 
This paper proposes an efficient optimistic concurrency control algorithm and a query optimization 
technique (lazy queries) used in a massively parallel B-tree with variable-length keys. B-trees with 
variable-length keys can be effectively used in a variety of database types. In particular, we show how such 
a B-tree is used in our implementation of a semantic object-oriented DBMS. Our concurrency control 
algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict 
detection. We prove that the algorithm ensures serializability and external consistency. Our algorithm uses 
local logical clocks and does not require physical clock synchronization. Lazy query execution algorithm 
is used to reduce the client-server traffic and improve the granularity of concurrency control by 
minimizing the number of optimistic locks. Most relevant processing is done at the client machines, thus 
reducing the data and processing overheads at parallel B-tree servers. 

1.      Introduction 
B-tree data structures are widely used in implementation of databases. B-trees allow to insert, 
delete, find, and retrieve a number of database records [Comer-79]. With the advent of parallel 
databases that can store thousands of terabytes of data and object-oriented technology, several 
new properties of B-tree data structures are highly desirable: 

• Transparent access to massive volumes of data. To index data database systems use keys or 
object identifiers. A B-tree record is usually divided into two parts: an index part and a data 
part. The B-tree records are indexed lexicographically by the index part. The index part in B- 
trees is usually of fixed size and the database capacity is limited. A new generation of 
databases (for example, [Rishe-92-DDS]) do not have keys at all: the data itself serves as a 
key of varying length. In a semantic database implementation, for example, each entity 
comprises a large number of strings, each of which corresponding to an attribute or 
relationship. 

• On-line transaction processing systems demand high transactional and query throughput. 
Such throughput requires running many transactions and queries in parallel. Efficient 

!This research was supported in part by NASA (under grant NAGW-4080) and ARO (under 
BMDO grant DAAH04-0024). 



concurrency control and query optimization algorithms are necessary to resolve conflicts 
between concurrent transactions. 

In this paper we propose algorithms of a new B-tree structure that combines the following 
properties: 

• Parallel multicomputer operation. We employ fast optimistic concurrency control. 
Granularity at the level of strings is attained. However, there is no overhead in the physical 
data structure. 

• Semantically safe optimistic locks. We achieve greater degree of safety in transaction 
conflict detection than in many algorithms that use locking. Even if transaction relies on 
absence of some data in the B-tree, and this data was inserted by another concurrent 
transaction, a conflict will be detected. 

• Efficient query execution algorithm - lazy queries - that gives faster execution of complex 
queries and better granularity in concurrency control. 

• Transparent variable size keys. In our B-tree, the whole record is a key (it is up to the B-tree 
client how to divide this key into index and data portion, if that is necessary). A record in our 
B-tree is called a string. 

• String data compression. All strings in data and index blocks in our B-tree are compressed 
by eliminating common prefixes. Additionally, the index strings are compressed by 
eliminating redundant suffixes. This results in very short index strings. Index compression 
not only reduces the storage requirements but also accelerates the B-tree operations by 
keeping more index data in a memory cache. 

• Automatic background load balancing that redistributes the data among the database 
computers to equalize the data and transactional load. 

• Very high capacity. The size of our parallel B-tree is virtually unlimited (specifically, it is 

1036 bytes for 64 bit computers). 

The rest of this paper is organized as follows. Section 2 defines the logical level of our B-tree. In 
Section 3 we describe a semantic database application that utilizes our B-tree and show some 
typical database queries. Section 4 describes a query optimization technique "lazy queries" that 
we use to reduce the number of server accesses and transaction conflict probability. A parallel B- 
tree architecture is presented in Section 5. Our concurrency control algorithm is presented in 
Section 6. 

2.      Elementary B-tree operations 
We define B-tree as an implementation of a data type, each instance of which is a lexicographic 
ordered set of strings with the following operations: 

1. Elementary query (interval) operator [I, r], where / and r are arbitrary strings. 

[/, r] S = { x e S | / <x <r },     where   < is the lexicographic order of strings. 

2. Update operator. Let D and I be disjoint sets of strings: 

S + (I,D) = (S - D) u I (I.e. we remove a set of strings D and insert a set I instead). 



The next section describes how these elementary operations were used in the implementation of 
semantic binary object-oriented database. 

3.      Sample Application: Semantic DBMS Implementation 
The semantic database models in general, and the Semantic Binary Model SBM ([Rishe-92- 
DDS] and others) in particular, represent the information as a collection of elementary facts 
categorizing objects or establishing relationships of various kinds between pairs of objects. The 
central notion of semantic models is the concept of an abstract object, which is any real world 
entity that we wish to store information about in the database. The objects are categorized into 
classes according to their common properties. These classes, called categories, need not be 
disjoint, that is, one object may belong to several of them. Further, an arbitrary structure of 
subcategories and supercategories can be defined. The representation of the objects in the 
computer is invisible to the user, who perceives the objects as real-world entities, whether 
tangible, such as persons or cars, or intangible, such as observations, meetings, or desires. 

The database is perceived by its user as a set of facts about objects. These facts are of three 
types: facts stating that an object belongs to a category; facts stating that there is a relationship 
between objects; and facts relating objects to data, such as numbers, texts, dates, images, 
tabulated or analytical functions, etc. The relationships can be of arbitrary kinds; for example, 
stating that there is a many-to-many relation address between the category of persons and texts 
means that one person may have an address, several addresses, or no address at all. 

Logically, a semantic database is a set of facts of three types: categorization of an object: xC, 
relationship between two objects: xRy, relationship between an arbitrary object and a value: 
xRv. Efficient storage structure for semantic models has been proposed in [Rishe-91-FS]. The 
collection of facts forming the database is represented by a file structure which ensures 
approximately one disk access to retrieve any of the following: 

1. For a given abstract object x, verify/find what categories the object belongs to. 
2. For a given category, find its objects. 
3. For a given abstract object x and relation  R,   retrieve   all y such that xRy. 
4. For a given abstract object y and relation   R,   retrieve   all abstract objects x 

such that xRy. 
5. For a given abstract object x, retrieve (in one access) all (or several) of its categories and 

direct and/or inverse relationships, i.e. relations R and objects y such that xRy or yRx. The 
relation R in xRy may be an attribute, i.e. a relation between abstract objects and 
values. 

6. For a given relation (attribute) R and a given value v,   find all abstract objects such 
that xRv. 

7. For a given relation (attribute) R and a given range of values [v7 , \2], find all 
objects x and v such that xRv and v; < v < v2 . 

We call the operations 1 through 7 elementary queries. The entire database can be stored in a 
single B-tree. This B-tree contains all of the facts of the database (xIC, xRv, xRy) and also 
additional information called inverted facts: CIx, Rvx, and yR,„vx (Here, I is the pseudo- 
relation IS-IN denoting membership in a category). The inverted facts allow to keep answers to 
the queries 2, 4, 6, 7 in a contiguous segment of data in the B-tree and answer them with one 
disk  access (when the query result is much smaller than one disk block). The direct facts xIC 



Query B-tree Implementation 
1.x? [xl, xl+ 1] 
2. C? [CI, CI+ 1] 
3xR? [xR,xR+l] 
4. ?Rx [xR,„v,xR,„v+ 1] 
5.x?? [x,x+l] 
6. ?Rv [Rv, Rv + 1] 
7.R[V,..V2]? [Rv7,Rv2+l] 

Table 1. Implementation of elementary queries 

and xRy allow to answer the queries 1, 3, and 5 with one disk access. This allows both sequential 
access according to the lexicographic order of the items comprising the facts and the inverted 
facts, as well as random access by arbitrary prefixes of such facts and inverted facts. The facts 
which are close to each other in the lexicographic order reside close in the B-tree. (Notice, 
that although technically the B-tree-key is the entire fact, it is of varying length and on the 
average is only several bytes long, which is the average size of the encoded fact xRy.). 

Numeric values in the facts are encoded as substrings using the order-preserving variable-length 
number encoding of [Rishe-91-IB]. 

Table 1 summarizes how the elementary 
semantic queries are implemented using the B- 
tree interval operators. We use notation S + 1 
to denote a string derived from the original 
string S by adding 1 to the last byte of S (For 
strings encoding abstract objects, this 
operation never results in overflow). 

For most elementary queries (Queries 1, 3, 4, 
5, 6) the number of binary facts is usually 
small.   Some   queries   (Queries   2   and   7), 

however, may result in a very large number of facts and it may be inefficient to retrieve the 
whole query at once. 

A common operation in databases is to calculate an intersection of two queries. For example, 
consider a query: "Find all objects from category Student that have the attribute BirthYear 
1980". This query can be executed using several scenarios: 

Scenario 1. 
a. Retrieve all persons born in 1980: execute an elementary query "BirthYear 1980 ?" 
b. For each person retrieved in the step a verify that the person belongs to the category Student 

Scenario 2. 
a. Retrieve all persons born in 1980: execute an elementary query "BirthYear 1980 ?" 
b. Retrieve all students: execute an elementary query "Student ?" 
c. Find an intersection of the objects retrieved in a and b. 

In Scenario 1 we retrieve all persons from all categories (Person, Instructor, and Student) who 
were born in 1980 and for each person we execute an additional elementary query to verify that 
the retrieved person is a student. In this scenario we have to execute a large number of small 
queries. 

In Scenario 2 we execute only two elementary queries and then find an intersection of the results. 
The problem is that the elementary query "Student ?" may result in a very large set of binary 
facts. Not only is this very inefficient in terms of expensive communication between client and 
server, but also such big query would be affected by any transaction that inserts or deletes 
students and our query would be aborted more often than the query in the Scenario 1. 



Thus, Scenario 1 is obviously better in our case. Consider now another query: "Find all 
instructors born in 1970". The number of persons born in 1970 could be larger or comparable 
with the total number of instructors. In this case, Scenario 2 would be much more efficient 
because we need to execute only two elementary queries. 

The next section introduces a technique of lazy elementary query execution that greatly reduces 
the number of disk accesses, the server traffic, and the transaction conflict probability by 
automatically reducing one scenario to another. For example, the intersection operator get a 
close-to-optimal implementation without keeping any data distribution statistics. 

4.      Lazy Queries 
In our B-tree the actual query execution is deferred until the user actually requests the query 
results. We define the elementary lazy query programmatic interface in a B-tree B as follows: 

1. Q :=[/,/•] B - define a lazy query [/, r] but do not execute it yet. Let Q.P be a pointer to 
future results of the query. Initially Q.PA := " , i.e. P points to an empty string. 

2. Seek(Q, x) - Moves the pointer Q.P, so that Q.PA = min\y e [/, r]B \ y > x}. 

The actual principal operations on the query results are derived from the above: 

1. Read(Q) := Q.PA - reads the current string pointed by the logical pointer Q.P. This 
operation results in an error if Q.P = null. 

2. Next(Q) := Seek(Q, Read(Q) + 0). We use notation s + 0 to denote a string derived from 
the string s by appending a zero byte. 

When the Seek operation is executed, the string pointed to by the new logical pointer is fetched 
from the B-tree and, normally, a small number of lexicographically close strings is prefetched 
and placed in a lazy query cache buffer. It is likely that the next Seek operation will request a 
string which is already in the cache buffer, so only a few Seek operations require actual disk and 
server access. 



Many queries can efficiently use the Seek operation. 
For example, we can find the intersection of two lazy 
queries Q; and Q2 very efficiently: construct a new 
lazy query (lazy intersection) Q3 where the Seek 
operation uses algorithm shown in Figure 1. 

This algorithm gives an efficient solution for the 
sample queries described in the previous section. For 
the query "Find all objects from category Student that 
have the attribute Birth Year 1980" we use three lazy 
queries: 

b.Q2 

c.Q3 

elementary lazy query "BirthYear 1980 ?" 
elementary lazy query "Student ?" 
Q;  & Q2 

Seek(Q3,y): 

Seeki®!,*); 
Seek(Q2,x); 
while (Q; .P * null & Q2.P * null & 

Q/P^Q^P^) do 
ifQ7.P

A>Q2
A.Pthen 

SeekCQ^Q^P*) 
.else"""' 

Seek(Q,,Q2.P
A); 

od; 
if Q7.P = null or Q2.P = null then 

Q5.P:=null 
else 

Q,.P:=Q;.P; 

Figure 1. Algorithm to find intersection 
Q3 :=Qy &Q2 Since   query   Q^   is   not   actually   executed,   our 

algorithm that finds intersection will not require to 
fetch every student from the database: the number of 
actual disk accesses to retrieve the students in the query Q2 will be less than or equal to the 
number of persons born in 1980. Thus, the cost of the lazy query Q3 will be smaller than the cost 
of the optimal solution for elementary queries in Scenario 1 described in the previous section. 

For the query "Find all instructors born in 1970" we use three similar lazy queries. Since the 
number of instructors is likely to be small, it is possible that all instructors will be fetched in the 
first disk access, and the whole query will require a number of server accesses close to 2, which 
is the optimal number. 

Lazy queries not only result in a smaller number of server accesses. We will show that lazy 
queries allow to improve the granularity of our concurrency control algorithm and reduce the 
transaction conflict probability. 

5.      Parallel B-tree 
A massively parallel B-tree should perform many queries and transactions simultaneously and its 
size should scale to hundreds of terabytes even if the underlying computer hardware supports 
only 32 bit addressing. This can be achieved by splitting the B-tree into partitions of about 1 
gigabyte in size. The whole B-tree is then a network of computers where each computer holds 
one or more B-tree partitions. 
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The B-tree partitions themselves must be 
indexed. This index is also represented as a B- 
tree which is called a Partitioning Map. The 
Partitioning Map B-tree can reference 
approximately 200,000,000 B-tree partitions. 
Since each partition can hold up to about 1GB 
of data, the total addressable B-tree space is 
limited  by  200,000   Terabytes.   For   64   bit 

computers this limit becomes 1018 times larger, 

which is about 10 bytes and is beyond any 
practical database size. Figure 1 shows typical 
client-server model of parallel B-tree. 

Disk 

Figure 2: Client-server model of Parallel B-tree 

6.      Concurrency Control 
Our concurrency control algorithm is an optimistic algorithm that first accumulates a transaction, 
and then performs it using a 2-phase commit protocol [Gray-79], and backward validation 
[Haerder-84] to ensure the serializability and external consistency of transactions. Our algorithm 
benefits from and improves upon the validation technique of the [Adya&al-95] algorithm for an 
object-oriented database. Their algorithm uses a loosely synchronized physical clocks to achieve 
global serialization and detects conflicts at the object level granularity. In our algorithm, a finer 
granularity at the level of strings is attained and we used logical clocks to achieve global 
serialization; nevertheless, our algorithm does not require maintaining any extra data per string 
or per client. 

6.1.    Accumulation of Transactions 
In a parallel B-tree updates and queries made by a client should be verified for conflicts with 
updates and queries made simultaneously by the other B-tree clients. A transaction is a group of 
B-tree updates and queries which is guaranteed to be consistent with the queries and updates 
executed concurrently within other transactions. To create such a group of operations we have 
several B-tree operations in addition to the lazy queries defined in Section 4: 

1. Insert String x 
2. Delete String JC 

3. Transaction Begin 
4. Transaction End 

A transaction is a sequence of all lazy queries and updates (Operations 1,2) executed between the 
Transaction Begin and Transaction End. When the Transaction End is executed, all queries and 
updates made since the Transaction Begin are checked for conflicts with the queries and updates 
made by concurrent transactions. If there is a conflict, the transaction is aborted and the 
Transaction End returns an error. 



The updates made within a transaction do not change the B-tree immediately. Instead, these 
updates are accumulated at the client side in a set of inserted strings I and a set of deleted strings 
D. The B-tree strings remain unaffected. The insert and delete operations work as follows: 

insert^) = { D := D - {x}; I := I u {x} } 
delete(jc) = {I:=I-{A:};   D:=Du{x}} 

When Transaction End is executed, the set D is deleted from the B-tree and the set I is inserted 
into B-tree: 

B := (B - D) u I 

During the accumulation of a transaction into sets D and I, our concurrency control algorithm at 
the client also accumulates a set V to be used for backward validation. The set V contains the 
specification of each subinterval read by a query within the transaction and a timestamp of this 
reading. A subinterval is a subrange within a query which subrange was physically retrieved 
from one database partition at one logical moment in time. The logical time at a given database 
partition is incremented every time a committed transaction physically changes that partition. 
The subintervals are stamped with this logical time and a number that identifies the partition in 

the system. Thus the set V is {([4, rk], tk, pk )"k=l}, where tk is the timestamp and pk is the 
partition number. 

In our validation technique, when committing a transaction T, the system does not need to 
remember the results of T's queries; it remembers only query specifications [/, r], which are 
checked against concurrent transactions at T's commit time. The validation is done against 
transaction queues, normally without any disk access. 

Lazy queries can be used to further reduce the validation specified by the set V and improve the 
granularity in conflict detection. Previous examples have shown that the user does not actually 
retrieve all facts from the lazy query interval. The intersection of lazy queries uses the Seek 
operation and actually retrieves only a few strings from the original elementary queries. In our 
implementation, a lazy query automatically keeps track of those string subranges that have 
actually been by the user. This union of subranges can be much smaller than the union of the 
original elementary query intervals. This results in a finer transaction granularity and smaller 
conflict probability. At the end of transaction execution, the string subranges from all lazy 
queries are further optimized by merging intersecting subranges of all lazy queries. This 
optimization is done at the client side, which allows us to reduce the server load and the 
transaction execution time. 

An accumulated transaction is a triple T(I, D, V) of strings to be inserted I, strings to be deleted 
D, and string intervals V to be verified. 

Note that even if no updates were made, a transaction is still necessary to ensure the consistency 
of queries. Thus, a query can produce an accumulated transaction T(I, D, V) with empty sets D 
and I. 



6.2.    Validation Protocol 
Validation is necessary to ensure two important properties of transactions: serializability and 
external consistency. Serializability means that the committed transactions can be ordered in 
such a way that the net result would be the same as if transactions ran sequentially, one at a time. 
External consistency means that the serialization order is not arbitrary: if transaction S 
committed before T began (in real time), S should be ordered before T. 

When a client commits a transaction, the accumulated transaction T is delivered to one of the 
database servers. This database server is called the transaction's originator. The transaction 
originator splits the arriving transaction into subtransactions Ti according to the partitioning map 
and distributes the subtransactions among the database partitions. A subinterval ([lk, rk], tk,pk) 
in the set V is distributed to the partition pk (without consulting the partitioning map). This 
allows to detect conflicts with system transactions that perform load balancing, which may 
change the partitioning map. 

The transaction originator uses the 2-phase commit protocol to update the database. In the first 
phase, the transaction originator distributes the subtransactions among the database partitions. 
Each database partition verifies that no conflicts with any other transaction is possible and sends 
a "ready" or "failed" message to the transaction originator. If the transaction originator receives 
a "failed" message, it immediately aborts the other subtransactions and notifies the client. When 
all database partitions return a "ready" message, the transaction originator sends a "commit" 
message to the participating partitions. 

In a backward validation protocol, the arriving subtransaction T,(I,,D,,V/) is checked against all 
transactions already validated successfully. In our B-tree, each partition maintains a log of 
recently committed transactions CL and a log of transactions waiting for commit WL. 

We say that a set of string intervals V intersects a set of strings A iff there exists an interval [/, r] 
in V such that [l,r] A^0 (i.e. for some x e A: I <x <r). 

We also say that two transactions T(Ir, DT, VT) and S(Iy, D5, \s) intersect if: 

l.IrnDs * 0 or Iy nDr^0 
or 
2. Ys intersects Ir u Dr 

or 
3. Vr intersects Is u Ds 

When the subtransaction Tt arrives, it is verified that T, intersects with no transaction S in WL. 
Additional verification is necessary to ensure that no query in T, is affected by a recently 
committed transaction S in CL. We check that each interval ([lk, rk], tk,nk) in V,- of T,- does not 
intersect with the sets Is and Ds of any transaction S in CL that has greater timestamp than tk. 

If the subtransaction is successfully verified, it is appended to the WL and the "ready" message 
is sent to the transaction originator, otherwise the "failed" message is sent to the transaction 
originator. 



While normally not requiring any disk access, this algorithm's CPU time is 

0(|V,.||X(||WL|| + |CL|V,.|)) where CL|V,. are the committed transactions younger than an 

average query in V,. The algorithm can be significantly accelerated by merging small sets in CL 
and WL. 

7.      Proof of Correctness 
Our concurrency control algorithm satisfies both serializability and external consistency 
requirements. Consider two arbitrary transactions T and S. Any two subtransactions T, and Sk of 
T and S for different partitions in our B-tree, are disjoint, i.e. T, does not intersect Sk for all i * 
k. Because of this and the definition of intersection, T and S intersect iff for some partition i T, 
intersects S,-. 

Definition: Relation "71" between transactions that have been successfully performed in our 
system: T % S if any of the following conditions (a) and/or (b) holds: 
(a) There exists a partition i such that T, intersects S,- and T,- entered CL,- before S,-. 
(b) The programmatic transaction that generated S began execution at the client after   the 

commit of T had been acknowledged to the user, i.e. T completed. 

Lemma 1. The relation 7t is acyclic. 
Consider an arbitrary number n of transactions and assume that there is a cycle: 

T7 7i T2 n ... 7t T" % T1. 

Choose an arbitrary partition y where T'j has entered C\J. Let t„ be the physical moment 
of time of said entry. Relation T" n T1 implies one of two cases at time te: 

1. Condition (b): The transaction T" is already committed. 
2. Condition (a): There exists a partition / such that T",- intersects T7,- and T",- entered CL,- before 

TV 

In both cases there exists a partition of T" in which the physical moment of time when the 
subtransaction of T" enters CL is less than t0. 

In case 1, T" is already committed and all subtransactions of T" are in CL by the time tg. In case 
2, the fact that T enters CLy- at the time t„ and the 2-phase commit protocol implies that the 
other subtransactions of T; must be either in WL or CL at the moment t0. Thus, the 

subtransaction T;,- must be in WL or CL at the moment t„. According to our backward 
validation protocol T",must be in CL at this time (otherwise if T",- is in WL, the intersecting 
subtransaction T7,- would be aborted). 

Repeating the same argument n times for the relations T"'17t T",..., T2 71 T1, we conclude that 
there exists a partition k of T; in which T1 is already in CLft before time t„. 

10 



Thus, for every partition j of T7 there exists a partition k in which T\ enters CL earlier than T]j 

enters CLj. Since T; has a finite number of partitions this implication is false, in contradiction to 
the initial assumption. 

Therefore, " n " is acyclic. I 

Theorem: Our schedule is serializable and externally consistent. 

Proof: 
Consider an arbitrary set of transaction that have successfully completed in the system. By the 
previous Lemma, "71" imposes a partial order on them. According to the known theorem that 
"for every partial order there exists a total order that preserves the partial order", there exists a 
total order "7t7i" preserving "71". The order "TTTT " defines a serialization of transactions 
Ty,...,Tm. The series preserves external consistency because "71" does, by its definition. It 
remains to show that every transaction Tk in the series saw the database in a state after all the 
previous transactions and before any subsequent transactions in the series, i.e. every query [l,r\ 
in V* had resulted in 

(1) [/,r]£(I',D') 
i<k 

Consider an arbitrary query ([/,#■], t, p) in Vt. We need to prove that 

(2) U,r]      X   (I'P,D;) = [/,r]£  (l',,D',) 
/':T'updated /<* 

before I 

The left sum is what the query [/,/■] actually saw at the partition p, while the right sum is what it 
should have seen if serializability requirement is fulfilled. From the set-theoretical definitions of 
queries and transactions it follows that: 

[l,r](A + B) = [l,r]A + [l,r]B. 

Therefore, (2) is equivalent to: 

(3) E  [/,r](i;,D;) =   X  [/,r](l',,D'p) 
<:T'updated »'<* 

before I 

Assume that (3) is not true. Consider two cases: 

Case 1. 
The left sum in (3) has an extra addend [/,/•] (I Jp ,D Jp) & 0, k < j, i.e. the query [l,r\ may have 

seen the results of transaction V that was serialized after T*. This implies that T* intersects V 
and T' entered CLp before the moment t and, therefore, before T*. 

11 



Since the total order relation nn preserves the partial order relation n , T* TTTD T' implies 
notfT' 7t Tk). By the definition of relation % , this in turn implies that there is no partition p 
such that Ty intersects T* and V entered CLp before T*. Thus, we have a contradiction and this 
case can never occur. 

Case 2. The left sum does not have some addend [/,#■] {\'p, D
J

p) * 0, j < k, i.e. T* did not see 

some updates of transaction V ordered before T*. Like in the previous case, V nn T* implies 
not(T* 7t T') and, therefore, there is no partition p such that T* intersects T and T* entered 
CLp before V. Since [l,r] (Ijp, D

J
p) * 0, T intersects T* at the partition p. Therefore, V should 

have entered CLp before T* . Thus, there is a moment when V is in CLp and T* is in WLp. 

Since the left sum does not have the addend (IJ, D J) , Ty must have entered CLp after the 

moment /. When T* is checked by the backward validation protocol at the partition p, according 
to our query verification algorithm, each query ([/, r] t, p) of Tft should be verified against all 
transactions in CLp with timestamp greater than t. Since [/,/•](I jp, D j

p) * 0 for some 

transaction T, the verification fails and Tft is aborted. Thus, in our case T* would have been 
aborted, and we have a contradiction to our assumption that Tk is a committed transaction. 

Thus, the equation (3) is valid and our schedule of transactions is serializable. ■ 

8. On Load Balancing 
A query of transaction execution time is determined by its slowest subquery or subtransaction. 
Thus, load balancing is essential in our system to equalize the data and transactional load among 
B-tree partitions. In our system, load balancing is performed as a series of load balancing 
transactions that transfer small string intervals from one partition to another [Rishe&al-96]. 

Load balancing transactions require a large amount resources and time to move the data. Thus, 
the load balancing transactions should be well coordinated in the system. Since the data 
movement time is large, a centralized algorithm performs well without becoming a system 
bottleneck. In our B-tree, a centralized load balancing module periodically collects data and load 
distribution statistics from all partitions and heuristically generates a data distribution policy, 
initiating the load balancing transactions executed at the B-tree partitions. Apart from the load 
balancing transactions, the load balancing module can create a new partition or delete an empty 
partition which is no longer referred to by any other B-tree partition. Our concurrency control 
algorithm maintains its safety and efficiency notwithstanding load balancing activity done 
according to our algorithm of [Rishe&al-96]. 

9. Client String Cache 
The query performance can be improved even further by using a client B-tree string cache which 
accumulates all strings recently retrieved from all database partitions. This allows to perform 
many frequently executed queries in zero server accesses. The B-tree cache stores all strings 
retrieved from the database servers along with the timestamp attribute and the partition number 
for each string. 

Since the attributes of an object constitute lexicographically close strings, it is likely that after 
requesting a string the client will later request lexicographically close strings. Thus, the cache 
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performance can be improved by prefetching more than one B-tree block that contain the 
requested query. 

The client cache significantly improves the performance of our optimistic concurrency protocol. 
When a client transaction fails due to a conflict with another transaction which affects some 
queries, a list of failed (affected) queries is returned to the client. All failed string ranges are 
invalidated in the client cache, and when the transaction is executed again, the client retrieves the 
invalidated ranges from the server. When the transaction runs the second time, most of the other 
ranges that the user retrieves are already in the string cache and the number of server accesses is 
much smaller. This can significantly improve the transaction execution time at the second 
attempt. Since the conflict probability is proportional to the execution time, the conflict 
probability is also reduced. 

10. Livelocks and Exceptional Pessimistic Locks 
In rare situations, a transaction may be repeatedly aborted and reexecuted, causing a livelock. To 
avoid this, we introduce a pessimistic element in our concurrency control. When a privileged 
user desires to protect a new transaction, the user can also designate it as pessimistic. 

A transaction in the pessimistic mode has a unique logical identifier assigned by the system. This 
identifier has smaller value for older transactions or transactions with higher priority. A 
transaction executed in the optimistic mode is "assigned" an infinitely large logical identifier. 

A transactional query in a pessimistic mode does not use cache, but is sent directly to the 
corresponding database partitions. Each partition maintains an additional log called PL which 
logs all pessimistic transactional queries as soon as they are executed. Whenever a new 
transaction T conflicts with a query in PL that has a smaller logical identifier than T, T is 
aborted. To ensure that a query in pessimistic transaction does not conflict with any transaction 
which is ready to commit, the query execution should be delayed until there is no transaction in 
WL that conflicts with the query. When an accumulated pessimistic transaction T(I,D,V) 
arrives, its verification should be delayed until there is no transaction in WL that conflict with 
the sets D or I. A query is removed from PL when its transaction arrives for verification or after 
a timeout period, whichever happens first. 

This algorithm guarantees successful execution of the transaction with the smallest logical 
identifier. 

11. Conclusion 
In this paper we described our efficient concurrency control algorithm that we used in 
implementation of a parallel B-tree server. This algorithm has very high granularity while 
avoiding high storage and processing time overheads. Our algorithm uses logical clocks and 
does not require physical clock synchronization. The B-tree server can handle variable length 
keys and can be used in a variety of databases, including relational, object-oriented, and 
semantic. Many of our B-tree features (data compression, concurrency control, lazy queries) 
have been implemented in C++ and tested. Preliminary results demonstrated very good 
performance. 

Lazy queries in a B-tree can significantly improve server performance in case of complex and 
large queries. Lazy queries can also decrease the transaction conflict probability, which is 
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essential for on-line transaction processing systems where high contention workloads are 
common. Our algorithm has a very fine granularity (attribute or string level granularity), which 
also contributes to smaller transaction conflict probability. 
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We are developing a massively parallel semantic database machine. Our basic semantic storage structure ensures balanced load far mast 
parts of the database. The load to the other parts of the database is kept balanced by a heuristic algorithm which repartitions data amoni; 
processors in our database machine as necessar}1 to produce a more evenly balanced load. We present our inexpensive, dynamic load balanc- 
ing method together with a fault- lolerans data transfer policy dial will be used to transfer [he repartinoned data in a way transparent to the 
users of the database. 

Keywords: DBMS, massive parallelism, semantic data models, load balancing, database machine 

1. INTRODUCTION 

Database management systems are emerging as prime targets 
for enhancement through parallelism. In order for parallel 
database machines to be efficient, the processors in the sys- 
tem must have comparable load. A massively parallel 
database machine which uses thousands of processors will 
allow for massive throughput of transactions and queries if 
no processors become a bottleneck. This paper proposes a 
load balancing method for a massively parallel semantic- 
database. 

Much work on load balancing for relational databases and 
file systems has been done and can be utilized in our 
research. For example. Sitaram et a/.1 propose several 
dynamic load balancing policies for multi-server file sys- 
tems. A dynamic load balancing algorithm for large, shared- 
nothing, hypercube database computers which makes use of 
relational join strategies is presented in Hua and Su2. Lee 
and Hua-1 present a self-adjusting data distribution scheme 
which balances computer workload in a multiprocessor 
database system at a cell level during query processing. A 
run-time reorganization scheme for rule based processing in 
large databases is discussed in Stolfo et al.A. 

Our database computer will make use of a shared-nothing 

architecture. The computational load on each processor of 
our database computer will vary directly with the demand for 
data on that processor. Imbalances in the number of data 
accesses among nodes can be rectified by repartitioning the 
database, much as imbalances in computational demands in 
process scheduling can be rectified by moving processes 
from one machine to another. When a range of facts in our 
database is moved from one processor's control to another 
processor's control, the load on the first processor will go 
down. The methods for determining imbalances in our sys- 
tem, and the methods to relieve these imbalances in our sys- 
tem, are very similar to the methods used for computational 
dynamic load balancing in shared-nothing computers. An 
adaptive, heuristic method for dynamic load balancing in a 
message-passing multicomputer is presented in Xu and 
Hwang5. A semi-distributed approach to load balancing in 
massively parallel multicomputer systems is presented in 
Ahmad and Ghafoorfi. 

Our massively parallel database machine architecture makes 
use of a distributed system of many processors, each with ils 
own permanent storage device. This shared-nothing approach 
requires that any load balancing operations be performed by 
message passim:. The data distribution scheme that is used in 
our database' system allows load balancing to he achieved by 
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data rcpartiiioning among the nodes of our system. 
This paper refines the results reported in Rishie et a I.1 and 

extends them by adding a fault tolerant data transfer policy 
for data rcpartitioning. 

2. SEMANTIC BINARY DATABASE 
MODEL 

The semantic database models in general, and the Semantic 
Binary Model SBM (Rishie1* and others) in particular, repre- 
sent the information of an application's world as a collection 
of elementary facts categorizing objects or establishing rela- 
tionships of various kinds between pairs of objects. The cen- 
tral notion of semantic models is the concept of an abstract 
object, which is any real world entity that we wish to store 
information about in the database. The objects are catego- 
rized into classes according to their common properties. 
These classes, called categories, need not be disjoint - that 
is. one object may belong to several classes. Further, an arbi- 
trary structure of sub-categories and super-categories can be 
defined. The representation of the objects in the computer is 
invisible in the user, who perceives the objects as real-world 
entities, whether tangible, such as persons or cars, or intangi- 
ble, such as observations, meetings, or desires. The database 
is perceived by its user as a set of facts about objects. These 
facts are of three types: facts stating that an object belongs to 
a category: xC: facts staling that there is a relationship 
between objects: xRy: and facts relating objects to data, such 
as numbers, texts, dales, images, tabulated or analytical 
functions, etc: xRv. The relationships can be of arbitrary- 
kinds; stating, for example, thai there is a many-to-many 
relation address between the category of persons and texts 
means that one person may have an address, several address- 
es, or no address at all. 

3. STORAGE STRUCTURE 

An efficient storage structure for semantic models has been 
proposed in Rishie1'- "'. The collection of facts forming the 
database is represented by a file structure which ensures 
approximately I disk access to retrieve queries of any of the 
following forms: 

1. For a given abstract object x. verify/find what cate- 
gories the object belongs lo. 

2. For a given category, find its objects. 
?. For a given abstract object x and relation R. retrieve 

all/certain y such that xRy. 
4. For a given abstract object y and relation R, retrieve 

all/certain abstract objects x such that xRy. 
5. For a given abstract object x. retrieve (in one 

access) all (or several) of its direct and/or inverse 
relationships, i.e. relations R and objects y such that 
xRy or yRx. The relation R in xRy may be an 
attribute, i.e. a relation between abstract objects and 
concrete objects. 

6. For a given relation (attribute) R and a given con- 
crete object y, find all abstract objects such that 

xRv. 

7."" For a given relation (attribute) R and a given range 
of concrete objects [y,, y2], find all objects x and y 
such that xRy and y < v, ^ Vi. 

The entire database can be stored in a single file. This file 
contains all of the facts of the database (.vC and xRy) as well 
as additional information called inverted facts: C.v. Ry.x. The 
inverted facts ensure that answers to queries of forms 2. 4. 6 
and 7 are kept in a contiguous segment of data in the 
database which allows them to be answered with one disk 
access. The direct facts xC and xRy allow the database to 
answer queries of forms 1. 3, and 5 with one disk access. 
The file is maintained as a B-tree. The variation of the B-tree 
used allows both sequential access according to the lexico- 
graphic order of the items comprising the facts and the 
inverted facts, as well as random access by arbitrary prefixes 
of such facts and inverted facts. Facts which are close to 
each other in the lexicographic order reside close to each 
other in the file. (Notice that although technically the B-trec- 
key is the entire fact, it is of varying length and on the aver- 
age is onlv several bytes long, which is the average size of 
the encoded fact xRy.) 

Consider, for example, a database containing information 
regarding products manufactured by different companies. 
The following set of facts can be a part of a logical instanta- 

neous database: 

COMPANY 
COMPANY-NAME 'IBM' 
MANUFACTURED object: 
MANUFACTURED object? 
PRODUCT 
COST 3600 
DESCRIPTION Thinkpad' 
PRODUCT 
COST 100 
DESCRIPTION TrackPomt' 

The additional inverted facts stored in the database are: 

1. COMPANY object 1 
2. COMPANY-NAME 'IBM' object I 
3. object2 MANUFACTURED-BY object 1 
4. object? MANUFACTURED-BY object 1 
5. COST ?600 object2 
6. COST 100 object? 
7. DESCRIPTION Thinkpad' object2 
8. DESCRIPTION TrackPoinf object? 
9. PRODUCT object2 
10. PRODUCT object? 

1. object 1 
~l object 1 
3. object 1 
4. object 1 
5. object2 
6. object2 
7. object2 
8. object? 
9. object? 
10. object? 

To answer the elementary query "Find all objects manufac- 
tured by object 1". we find all the facts whose prefix is 
object{jAANUFACTURED. ('_' denotes concatenation.) 
These entries are clustered together in the sorted order of 
direct facts. 

To answer the elementary query "Find all products cost- 
ing between $0 and $800". we find all the facts whose prefix 
is in the range from COSTJd to COST_800. These entries 
are clustered together in the sorted order of inverted facts. 

In the massively parallel version that we are developing. 
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the B-tree is partitioned into many small fragments, each 
residing on a separate storage unit (e.g. a disk or non-volatile 
memory) that is associated with a fairly powerful processor. 
This disk-processor pair is called a node. Each node can 
retrieve information from the disk, perform the necessary 
processing on the data and deliver the result to the user, or to 
the other nodes. For updates the node verifies all of the rele- 
vant integrity constraints and then stores the updated infor- 
mation on the disk. Many database fragments can be queried 

or updated concurrently. 
The queries and transactions will enter into the network 

through host interfaces. Every host interface maintains a 
copy "of the Partitioning Map (PM) of the entire database. 
Since the whole database is a lexicographically ordered file 
represented by a set of B-trees. the map needs to contain 
only a small number of facts for each node: the lexicographi- 
cally minimal and maximal facts for each B-tree fragment 
that is stored on that node. The map changes only when the 
database is re-partitioned. The distribution policy that we 
propose in this work provides repartitioning that is rare, 
inexpensive, locali/.able. invisible to the system until all of 
the shifting of data is complete, and that does not interfere 

with the normal operation of the system. 
Most of the physical facts that are in our implementation 

of a semantic binary database start with an abstract object. 
These facts are ordered by the encoding of the abstract 
objects, which assigns a unique quasi-random number to 
each abstract object. Since there are so many of these tacts, 
and since the objects are randomly ordered, we can assume 
that traffic to each partition of these facts will be balanced 
over time. Other facts in a semantic binary database start 
with an inverted category or an inverted attribute (i.e. a rela- 
tion between an abstract object and a printable value). It is 
possible that at some lime there may be a need to access a 
certain attribute or category more often than other attributes 
or categories. The same may be true for a specific range ol 
values of a given attribute. Since all facts that refer to a par- 
ticular inverted attribute or inverted category are clustered 
together, this may cause a higher load on some 
processor/disk pairs than on others. Since load imbalances 
can occur in some kinds of facts but not others, the file con- 
taining the facts will be split into two subfiles. The first sub- 
file will contain all the facts that begin with an abstract 
object. The second subfile will contain the facts that begin 
with an inverted attribute or category. Additionally there is a 
third subfile containing long data items: texts, images, etc.. 
which are pointed lo by facts. Each subfile will be initially 
partitioned evenly over all the processor/disk pairs in the 
system. The first subfile is already balanced; the second and 
third subfiles may become unbalanced and will require a 
block placement algorithm that allows the data to be reparti- 
tioned. By repartitioning data, we will be able to more even- 
ly balance the load to each data partition. 

4.        REQUEST EXECUTION SCHEME 

We employ a deferred update scheme for transaction pro- 
cessing. This means that transactions are not physically per- 
formed until they are committed, but are accumulated by the 
database management system as they are run. Upon comple- 

tion of the transaction the DBMS checks its integrity and 
then physically performs the update. A completed transac- 
tion is composed of a set of facts to be deleted from the 
database, a set of facts to be inserted into the database, and 
additional information needed to verify that there is no inter- 
ference between transactions of concurrent programs. In our 
parallel database, each node is responsible for a portion of 
the database. When an accumulated transaction is performed, 
the sets of facts to be'inserted into, and deleted from, the 
database must be broken down into subsets that can be sent 
to the processors which are responsible for the relevant 
ranges of data. 

Each host in the system will have a copy of the Partition- 
ing Map (PM). The Partitioning Map is a small semantic 
database containing information about data distribution in 
the system. Figure 1 is a semantic schema of the partitioning 
map. 

The partitioning map contains a set of ranges and their 
lexicographical bounds - the low-bound and the high-bound 
values. When a query or transaction arrives, the host will 
identify its lexicographical bounds. The host will then use 
the partitioning map to determine a set of ranges that needs 
to be retrieved or updated and hence the nodes which will be 
involved in the current transaction or query. 

The partitioning map will be replicated among hosts. 
However, this does not imply that we need a global data 
structure: the algorithm described below allows updates of 
the partitioning database to be performed gradually, without 
locking and interrupting all hosts. 

A range can be obtained from the node pointed to by the 
location reference in the partitioning database. This node 
should either have the range or a reference to another node 
which contains the range. 

To perform load balancing we will need to move ranges 
from one node to another. A moved range will be accessible 
via an indirect reference that is left at its previous location. 
Such an indirect access slows down the system, especially 
when the range is frequently accessed by users. To allow a 
direct access to the moved range we need to update the loca- 
tion reference in the partitioning database. We will not per- 
form this update simultaneously for all the host interfaces. 
The update will be performed when a host executes the first 
query or transaction that refers to the range that was trans- 
ferred. The node that actually holds the range will send the 
results to the host along with a request to update the parti- 
tioning map. This means that the first transaction will have 
to travel a little further than all subsequent transactions. The 
second and future queries or transactions made through this 
host will be executed directly by the node pointed lo by the 
location reference. 

The data structure at each node which supports indirect 
referencing will be exactly the same as the partitioning map 
described above. We will call this data structure a local parti- 
tioning map. 

Each range of facts will be represented as a separate B- 
tree structure which will reside on the node pointed to by the 
partitioning map. Consider a case where a range has been 
moved several times from one node to another. We may have 
multiple indirection references to the actual location of the 
range. These indirect references will be changed to direct 
references afcdeseribe?! above. 
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5. DATA TRANSFER POLICY 

In order to ensure thai the database remains consistent 
throughout a load balancing data transfer, load balancing 
actions are executed as transactions initialed by the system. 
A lame range of facts is transferred by executing a series of 
small svsicm transactions that transfer small portions of data 
from one partition to another. The system transactions arc 
subject to the same logging and recovery actions as regular, 
user initialed, transactions. Apart from the data transfer, each 
small load balancing transaction also includes the data ncc- 
essar\ for updating the partitioning map. To ensure that the 
partitioning map remains consistent, the partitioning map 
update is executed using a 2-phase commit protocol. 

6. LOAD BALANCING POLICY 

When idle, the host interfaces will send data and work load 
statistics recently accumulated from the nodes to a Global 
Performance Analyzer (GPA). The host interfaces accumu- 
late this data as the results of queries and transactions flow 
through them back to the user. The GPA is a process that 
analw.es the statistical information obtained and generates 
preferable directions of data transfer for each node. 

The statistics report will contain only the changes since 
the previous report: 

• Changes in data partitioning 
• Number of accesses for each range 
• Free space on each node 

The GPA will use a heuristic search algorithm which uses a 
choice function to select a small number of possible data 
movements for the system. The final state will be estimated 
by a static evaluation function S. The GPA will select the 
data movement with the lowest value of the resulting static 

evaluation S. 
The choice  function  should comply with the following 

stratecies: 

1. Whenever possible load balancing should be 
achieved by joining ranges together. Joining ranges 
will result in faster query execution and smaller par- 

titioning maps. 
2. A criterion for determining preferable destinations 

for a range transfer is the desire to move a range to 
a destination node which contains the lexicographi- 
cally closest range to the transferred range. In other 
words, it is desirable to locate lexicographically 
close ranges on the same node whenever possible. 

3. If a range has an exceptionally high number of 
access or requires an exceptionally large amount of 
storage - split the range into several parts and trans- 
fer them to other nodes. 

Each node will be characterized by two parameters: 

1. The amount of free disk space on the node. F 
2. The percentage of idle time /. In other words the / 

is: / = ldlc/T. where T is a given time interval and 
Idle is the node's idle time during the time T. 

The resulting state will be estimated by the following param- 

eters: 

1. .4 - the total amount of data that will be necessary to 
transfer in the system 

2. IIr- the mean square deviation of F 
3. I), - the mean square deviation of / 
4. M - total number of ranges in the system 

The static evaluation function can be represented as: 

S = C, *A + C: * DF + C, * O; + G * M. 

where C,. C\. C\ and C4 arc constants. 

7. CONCLUSION 

Our load balancing algorithm will provide our massively 
parallel semantic database machine with a method to reparti- 
tion data to evenly distribute work among its processors. The 
algorithm has very little overhead, as its statistics are accu- 
mulated during the normal processing of transactions. The 
load balancing is accomplished by repartitioning parts of the 
database over the nodes of the database machine. The repar- 
titioning will be transparent to the users and will not 
adversely affect the performance of the system. Our fault- 
tolerant data transfer policy will ensure that the database and 
its partitioning maps remain consistent during repartitioning. 

We are currently developing a prototype parallel semantic 
database on a network of workstations. We will evaluate our 
load balancing algorithm on this prototype system and 
experiment with ways to optimize our heuristic search algo- 

rithm. 
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SB2 Benchmark (Consumer Survey Database) 

The purpose of the test database is to store the information gathered in a typical consumer 
survey. All consumers are grouped by the type of the product they use. These groups are 
represented in the schema by subcategories G0,G1,...G9. A consumer usually belongs to 
several groups. Within each group a consumer may use several brands of the same 
product. The integer attributes A0,A1,...A9 are used to indicate which brands the 
consumer uses in the order of preference. Sometimes a consumer may want to enter a 
comment about any brand he uses. Comments for the corresponding brands are stored in 
the attributes C0,C1,...C9. Comments are entered very rarely. 

The problem domain can be easily represented in a semantic schema. A relational schema 
for Oracle allows several different designs. The design choice impacts both the space 
requirements for the database, and the efficiency of the transactions performed. Designing 
a relational schema we must take into consideration the characteristics of the data that we 
intend to store (which is not required for the semantic schema design). Since the tables 
G1,G2,...G9 are going to be sparse, we have two reasonable choices for the schema 
design, and we have implemented both. 

In the first design, which we call "Sparse," groups are represented as different tables like 
in the semantic schema. In the second design, which we call "Compact," all the data for 
all the groups is stored in one table having a three-attribute key (consumer, group and 
brand). This Compact approach is intended to save space, as it contains rows only for 
those brands that are actually used by the corresponding consumer. 

The database must be able to efficiently respond to arbitrary queries. Therefore, the 
relational database was created fully indexed. Further, Oracle was allowed to gather 
statistics on the database prior to running the benchmark transactions. 

In the Compact relational design the database itself required less space than in Sparse 
relational design, but the total occupied space including indexes was comparable for both 
designs, and about 3 times the space required by Semantic Database. The benchmark tests 
were performed for two different database sizes. In the first test, the initial database 
contained 100,000 consumers, in the second - 500,000 consumers. The actual database 
sizes are shown in the results section. 

Oracle transactions were written using the Embedded SQL. Transactions for the Semantic 
Database were written using semantic API. The same row data files were loaded into the 
Oracle and the Semantic Database. 



The initial data for the SB2 Benchmark Database (Consumer Survey Database) 

The consumer's name, address and comment are strings of random alpha characters. The 
length of the string is generated as a random number with a Normal Distribution (a table 
of distribution parameters is given). 

Each consumer can belong to a number of groups and within that group he can use a 
number of brands of the product. He can have a number of hobbies and use a number of 
stores. All these numbers are random with a Normal Distribution and parameters 
according to the table. 

Comment fields are filled for 2% of corresponding numeric brand preference values. 

SSN is a random number uniformly distributed in the range 100,000,000 .. 999,999,999. 

For the purpose of establishing of a "knows" relation all consumers are divided into 
disjoint sets S,..Sn, where each set contains exactly 10 consumers. Then 5 random 
consumers from each set S; are related to 5 random consumers from the set Si+1. 

There are 20 different stores with names "Store name #1" through "Store name #20" and 
types "Store type #1" through "Store type #3". 

Expenditure is a random number with a Normal Distribution and parameters according to 
the table. 

Cid is the ID of a consumer, assigned sequentially. 

Table of Normal Distribution parameters: 
Lower Upper Mean Variance 
bound bound 

Name length 5 40 12 5 
Address length 15 100 35 20 
Comment length 5 255 30 100 
Number of hobbies 5 per consumer 0 19 0 10 
Number of stores per consumer 1 19 4 10 
Expenditure 1 89 20 10 
Number of groups a consumer belongs to 1 10 5 4 
Number of brands a consumer uses 0 9 1 1 



SB2 Benchmark (Consumer Survey Database) 
Transactions 

Transaction 1: 
How many consumers are in the intersection of the ten groups G0..G9. 

Transaction 2: 
Create a new group G10 and populate it with those consumers who belong to both 
Gl and G2 and have Al=l in Gl and A2=2 in G2. 

Transaction 3: 
How many consumers are customers of store X and have hobby Y, excluding 
those who belong to both G3 and G4 and have A3=3 in G3 and A4=4 in G4. 

Transaction 4: 
For each person from a given (randomly chosen) set of 0.1% of all consumers, 
expand the relation "knows" to relate this person to all people he has a chain of 
acquaintance to. Abort the transaction rather than commit. Print the length of the 
maximal chain from the person. 

Transaction 5: 
Calculate the number of consumers in each group. 



SB2 Benchmark (Consumer Survey Database): SDB vs Oracle 

SB2 
Database Semantic Oracle Compact Oracle Sparse 
# of consumers 100K 500K 100K 500K 100K 500K 
Source size (Mb) 
Database size (Mb) 

23.00 
51.00 

123.00 
207.00 
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141.00 

123.00 
648.00 
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25.62 
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21.65 
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0.40 
0.11 

1.55 
0.29 
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13.88 
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1.20 
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T3 hot (sec) 

1.33 
1.16 

5.84 
5.55 

90.48 
48.34 

390.70 
389.63 

65.51 
45.28 

276.20 
223.28 

T4 cold (sec) 
T4 hot (sec) 

3.14 
0.08 

11.58 
0.28 

8.50 
1.18 

23.64 
10.22 

5.70 
1.11 

28.65 
7.43 

T5 cold (sec) 
T5 hot (sec) 

9.28 
8.70 

45.87 
43.86 

67.84 
36.86 

187.60 
187.83 
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PERSON 

Name,Address: String 
SSN: Integer 

Hobby: String m:m 
—»Knows m:m: —» 

CORPORATION 

Name: String total 
Address: String total 

LEGAL PERSON 

CONSUMER 

cid: Integer 1:1, total 
expenditure: Integer 

/ 

STORE 

Name: String total 
Type: String 

Vs 

GO 

a0,al,a2,a3,a4: Integer 
a5,a6,a7,a8,a9: Integer 
c0,cl,c2,c3,c4,c5: String 

c6,c7,c8,c9: String 

Gl 

a0,al,a2,a3,a4: Integer 
a5,a6,a7,a8,a9: Integer 
cO,cl,c2,c3,c4,c5: String 

c6,c7,c8,c9: String 

G9 

aO.al,a2,a3,a4: Integer 
a5,a6,a7,a8,a9: Integer 
c0,cl,c2,c3,c4,c5: String 

c6,c7,c8,c9: String 

Figure 1. Semantic Schema for SB2 Benchmark 



PERSON 

PID-key: Integer 1:1 
Name,Address: String 

SSN: Integer 

KNOWS 

PersonID-k: Integer 
KnowsID-k: Integer 

CORPORATION 

CorporationlD-key: Integer 1:1 
Name: String total 

Address: String total 

HAS HOBBY 

PersonID-k: Integer 
HobbyID-k: Integer 

HAS STORE 

ConsumerID-k: Integer 
StoreID-k: Integer 

HOBBY 

HobbylD-key: Integer 1:1 
Name: String 

CONSUMER 

CID-key: Integer 1:1 
expenditure: Integer 

Type,ID: Integer 

STORE 

StorelD-key: Integer 1:1 
Name: String total 

Type: String 

GROUPO 

ConsumerlD-key: Integer 1:1 
a0,al,a2,a3,a4: Integer 
a5,a6,a7,a8,a9: Integer 
c0,cl,c2,c3,c4,c5: String 

c6,c7,c8,c9: String 

GROUP9 

ConsumerlD-key: Integer 1: 
a0,al,a2,a3,a4: Integer 
a5,a6,a7,a8,a9: Integer 
c0,cl,c2,c3,c4,c5: String 

c6,c7,c8,c9: String 

Figure 1. Relational Schema for SB2 Benchmark (Sparse alternative) 

GROUP 

ConsumerID-k: Integer 
Group-k: Integer 

Brand, Value: Integer 
Comment: String 

Figure 2. Relational Schema for SB2 
Benchmark (Compact alternative) 

Oracle is fully indexed. Best results are chosen for Oracle with/without statistics. 
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We have adapted SQL, the standard relational database language, to semantic databases. The 
original purpose of this adaptation was to be compatible with, and be able to communicate 
with, relational tools. Interestingly, it turned out that the size of a typical SQL program for a 
semantic database is many times smaller than for an equivalent relational database. While we 
have previously demonstrated substantial program-size advantage for other languages, we had 
not anticipated an even greater advantage with SQL — a specialized language for relational 
databases. 

Our ODBC driver for the SDB Engine is fully operational, allowing SQL querying of a 
semantic database and interoperability with relational database tools, e.g. end-user systems 
like MS Access Query-By-Example. In these tools the number of user keystrokes required is 
proportional to the size of the generated SQL program. So again, savings are realized and 
simplicity is attained by use of the SDB model. 

An embedded SQL preprocessor has been developed and is fully operational. 

Our application of SQL to semantic databases allows utilization of full semantics of data, 
applies to scientific and spatial data, properly treats missing values, and produces queries 
which are typically an order of magnitude shorter than if written in SQL for an equivalent 
normalized relational database — see examples in Section 4. 

1.    SQL INTERPRETATION 

We use the same syntax as the standard ODBC SQL (with null values). However, our SQL 
queries refer to a virtual schema. This virtual schema consists of an inferred table T defined 
for each category C as a spanning tree of all the relations reachable from C. This is 
recursively defined as follows: 

Let C be a category. 

(1) The first attribute of T: 

D  C—attribute of T, range: C   (m:l) 
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(2) For every attribute A of T, for every relation r whose domain intersects with the range of 
A: 

D Ari_r'.T— attribute of T, range: range(r)   (m:l) 
provided the depth of recursion does not exceed the system variable $MAXDEPTH 

If the original relation r is many-to-many or one-to-many, the new attribute would be many- 
to-one, but many virtual rows would exist in the table T, one for each instance of the tree. If 
r has no value for an object, a null value will appear in the virtual relational table. 

The name of T is the same as of C, 

The attribute names of T contain long prefixes.. These prefixes can be omitted when no 
ambiguity arises, i.e.. attribute y is a synonym of the attribute x_y of T if T has no other 
attribute z_y where depth(z)>=depth(x). 

We note that the range of a virtual attribute may be of multi-media type: numbers with 
unlimited varying precision and magnitude, texts of unlimited size, images, etc. 

Prior to computing the virtual tables, we eliminate all special characters, including 
underscores, from concept names; we augment the schema or the user-view with the 
following virtual relations: 

• inverted relations: for every relation R, its inverse is called, by default, _R 

• for every category C, a surrogate attribute, also called C. This is the identity attribute on 
C. It can be used for checking on belonging to a subcategory (let p be a PERSON.; p is 
a student iff p.STUDENT is not null) or to produce a printable id of an object (see 
Appendix). 

• for every category, a combined attribute C__, which is the concatenation of all attributes 
of C that are representable by printable strings (this includes numbers, enumerated, 
Boolean. The concatenated values are separated by slashes. Null values are replaced by 
empty strings. 

• infinite virtual relations representing functions over space-time, which in the actual 
database are represented by a finite data structure. 

2.    TECHNICAL NOTES 

2.1.    Definition of the Extension of a Table 

The virtual table T for a category C is logically generated as follows: 

(1) Initially, T[C]=C, i.e.   T contains one column called C whose values are the objects of the 
category. 

(2) For every attribute A of T, for every schema relation or attribute r whose domain may intersect 
range(A), let R be the relation r with its domain renamed A and range renamed A r, let T be the 
natural right-outer-join of T with R.  (Unlike a regular join, the outer join creates A__r=null when 
there is no match.) 
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2.2. Surrogate Attributes 

In Release 0.1, the surrogate attribute of each semantic category is the internal id of the object. 

In Release 0.2, the surrogate attribute will be defined in accordance with our document on surrogates 
(see Appendix). 

2.3. User-control of Table Depth 

(Used only by sophisticated users trying to outsmart $MAXDEPTH defined by a graphical user 
interface; not needed by users posing direct SQL queries without a GUI.) 

For each category C, in addition to the default table named C, of depth limited by $MAXDEPTH, 
there are also tables called C_i for any positive integer i, with the depth limited by i rather than 
$MAXDEPTH. The tables C_i are not returned by the ODBC command requesting the list of all 
tables. 

2.4. User-specified Tables 

(Used only by generic graphical user interfaces; not needed by users posing direct ODBC SQL 
queries) 

Let C be a category. Let S={ A j ,..., Ak } be some unabbreviated attributes of the table C of type 
Abstract-object (i.e. no attribute At ends with an actual concrete attribute of an original semantic 
category). (Recall that the name of C is a prefix of each A}). 

We define a virtual table T(S) as the projection of the table C on the of attributes SPP comprised of the 
attributes S, their prefixes, and one-step extensions of the prefixes. 

(An attribute A is a prefix of an attribute in S iff A is in S or A_w is in S for some string w.  An 
attribute B is a one-step extension of an attribute A iff B=A or B=A w where w contains no 
underscores.) 

The name of T is generated as follows: for each A; let 5, be the shortest synonym of A(-. The name of 
T is: Bl B2 ....Bk 

2.5. Semantics of Updates 

Release 0.2 supports only restricted updates: 

delete from C where condition Removes objects from the root category C (does not delete them from 
supercategories of C). 

insert into C attributes values assignments 

Creates a new object, places it in the root category C, and relates it to some one-step attributes (i.e. the 
original attributes/relations of category C and their inverses.) 

insert into C attributes query 

Evaluates the query, resulting in a set of rows. For each row, a new object is created and placed in C. 
It's one-step relationships are assigned values from the rows. 

update C set A j=e j,... A jt =ek where condition 

Selects a set of object of category C. For each of them updates some one-step attributes. For example, 
to make a person become a student: update PERSON set STUDENT=PERSON where condition. 
To move the person from subcategory of students to subcategory of instructors: update PERSON set 
STUDENT=null,INSTRUCTOR=PERSON 
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insert into C R ... 

Allows creation of multiple relationships R. This cannot be accomplished with previous commands 
when R is many-to-many. 
delete from C R where condition 

Allows deletion of multiple relationships R. 

3.   EXAMPLES OF SEMANTIC SQL AND COMPARISON TO RELATIONAL SQL 

This section contains: the semantic schema of a Hydrology application; a normalized 
relational schema of the same application (a real schema, not our virtual schema); several 
SQL statements written for the semantic schema and (for comparison) for the relational 
schema. 

3.1.   Hydrology Application, Semantic Schema 
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PROJECT 

name: String key 
description: String 
comments: String 

starting-date: Date 
ending-date: Date 

LOCATION 

north-UTM: Number key/2 
east-UTM: Number key/2 

elevation-ft: Number 
description: String 

serves 
(m:m) 

PHYSICAL 
OBSERVATION 

STATION 

-»is-part-of m:l: —> 
structure: String 
comments: String 
housing: String 

ORGANIZATION 

—»is-part-of m:m: —> 
name: String key 

description: String 

by 
(m:l)i 

IMAGE 

image: Raw 
subject: String 

direction-of-view: 0.360 
comments: String 

type: Char(3) 

OBSERVATION 

time: Date-time 
comment: String 

located at 
(m:l) 

FIXED STATION 

platform-height-fl: 0..50.000 

MEASUREMENT 
TYPE 

name: String key 
measurement-unit: String 

upper-limit: Number 
lower-limit: Number 

MEASUREMENT 

value: Number 

Figure 3-1. Semantic sub-schema for physical observations. 
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3.2.   Relational Schema of the Hydrology Application 

PHYSICAL-OBSERVATION-STATION 

physical-observation-station-id-key:Integer       1:1;       comments:Str'mg;       housing-.Str'mg; 
structure:Strmg; is-part-of~physical-observation-station-id:mtege.r;  

LOCATION 

north- UTM-in-key:Number;              east- UTM-in-key:Number; elevation-ff.Numbev; 
descriptiomString;  

ORGANIZATION 

name-key:String 1:1; description:Str'mg;  

PROJECT 

name-key: String 
ending-date:Date; 

1:1; description:Stnng;       comments:Strmg; starting-date:Date; 

MEASUREMENT-TYPE 

name-key:String 1:1; measurement-unit:Strmg;upper-limit:Number; lower-limit:N\xmber; 

FIXED-STATION 

physical-observation-station-id-key:Integer              1:1;              platform-height-ft:0. .50.000; 
located-at—north- UTM:Number; located-at—east- E/ZM:Number;  

MEASUREMENT 

observation-id-key:Integer      1:1;      commenf.Strmg;      ft'rae:Date-time;      va/we:Number; 
o/"--name: String; by—physical-observation-station-id:Integer;  

IMAGE 

observation-id-key:lntcgcr 1:1; commenf.Strmg; rime:Date-time; image:R&w; subjecf.Str'mg; 
direction-of-view:0.. 360; commercto:String; fy/?e:Char(3); 
by—physical-observation-station-id:Integer;  
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Figure 3-2. Relational sub-schema for physical observations. Part I: tables 
representing the categories. 

PHYSICAL-OBSERVATION-STATION-BELONGS-TO--ORGANIZATION 

physical-observation-station-id-in-key.Integer, organization—name-in-key:Stnng;  

ORGANIZATION-RUNS-PROJECT 

organization-name-in-key:Str'm%; project-name-in-key.Stnng; 

PHYSICAL-OBSERVATION-STATION-SERVES-PROJECT 

physical-observation-station-id-in-key.Integer; project—name-in-key.Stnng;  

ORGANIZATION-IS-PART-OF-ORGANIZATION 

organization—name-in-key:Stnng; organization-2—name-in-key.Strmg; 

Figure 3-3. Relational sub-schema for physical observations. Part II: tables 
representing the m:m relationships. 
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3.3.   Program Size Comparisons: SQL 

1. List of the time and housing of temperature measurements over 50 degrees 

SQL statement based on semantic schema: 

select housing,time from MEASUREMENT where of name=' Temperature' and value>50 

SQL statement based on relational schema: 

select housing, time 

from PHYSICAL_OBSERVATION_STATION, MEASUREMENT 

where exists 

(select * from MEASUREMENT-TYPE 

where name_key = of name and name_key = 'Temperature' and 
by_physical_observation_station_id = physical_observation_station_id_key and 
value > 50) 
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2. The descriptions of organizations and locations of their fixed stations 

SQL statement based on semantic schema, Alternative 1: 

select description, belongs to     located_at_LOCATION from ORGANIZATION 

SQL statement based on semantic schema, Alternative 2: 

select description, LOCATION from ORGANIZATION 

SQL statement based on relational schema: 

select description, LOCATION.north_UTM_in_key, LOCATION.east_UTM_in_key 

from ORGANIZATION, LOCATION 

where exists 

(select * from FIXED_STATION 

where exists 

(select * 

from 
PHYSICAL_OBSERVATION_STATION_BELONGS_TO_ORGANIZATION 

where name_key = organization name_in_key and 

PHYSICAL_OBSERVATION_STATION_BELONGS_TO_ORGANIZATION. 
physical_observation_station_id_in_key = 
FIXED_STATION.physical_observation_station_id_key and 

located_at northJJTM = north_UTM_in_key and located_at eastJJTM = 
east_UTM_in_key)) 
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3. The observations since January 1, 1993 (including images, measurements and their 
types) with location of the stations 

SQL statement based on semantic schema: 

select OBSERVATION_, of_, LOCATION from OBSERVATION where time>' 1993/01' 

SQL statement based on relational schema: 

(select MEASUREMENTTYPE.*, LOCATION.north_UTM_in_key, 
LOCATION.east_UTM_in_key, MEASUREMENT.*, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL 

from MEASUREMENT_TYPE, LOCATION, MEASUREMENT 

where time > ' 1993/01' and exists (select * from FIXED_STATION where 
by physical_observation_station_id = physical_observation_station_id_key and 
located_at northJJTM = north_UTM_in_key and located_at eastJJTM = 
east_UTM_in_key and of name = name_key )) union 

(select MEASUREMENTTYPE.*, NULL, NULL, MEASUREMENT.*, NULL,NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL 

from MEASUREMENTTYPE, MEASUREMENT 

where time > ' 1993/01' and not exists (select * from FIXED_STATION where 
by physical_observation_station_id = physical_observation_station_id_key and 
of name = name_key )) union 

(select NULL, NULL, NULL, NULL, LOCATION.north_UTM_in_key, 
LOCATION.east_UTM_in_key, NULL, NULL, NULL, NULL, NULL, NULL, 
IMAGE.* 

from LOCATION, IMAGE 

where time > ' 1993/01' and exists (select * from FIXED_STATION where 
by physical_observation_station_id = physical_observation_station_id_key and 
located_at northJJTM = north_UTM_in_key and located_at eastJJTM = 
eastJJTMJnJcey)) union 

(select NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, IMAGE.* 

from IMAGE 

where time > ' 1993/01' and not exists (select * from FIXED-STATION where 
by physical_observation_stationJd = physical_observation_stationJdJcey)) 
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3.4.   Handling of Interpolated Spatial Functions 

The following userview contains infinite virtual categories POINT and BLOCK 
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PROJECT 

name: String key 
description: String 
comments: String 

starting-date: Date 
ending-date: Date 

LOCATION 

north-UTM: Number key/2 
east-UTM: Number key/2 

elevation-fi: Number 
description: String 

serves 
(m:m) 

located at 
(m:l) 

PHYSICAL 
OBSERVATION 

STATION 

—>is-part-of m:l: -» 
structure: String 
comments: String 
housing: String 

FIXED STATION 

platform-height-fi: 0..50.000 

ORGANIZATION 

—»is-part-of m:m: —> 
name: String key 

description: String 

by 
(m:l)i 

MEASUREMENT 
TYPE 

name: String key 
measurement-unit: String 

upper-limit: Number 
lower-limit: Number 

IMAGE 

image: Raw 
subject: String 

direction-of-view: 0.360 
comments: String 

type: Char(3) 

OBSERVATION 

time: Date-time 
comment: String 

MEASUREMENT 

value: Number 

from 
(m 

POINT 

time: Date-time 
x,y, value: Number 

in 
(m:m) 

m) 

BLOCK 

timel: Date-time 
xl, yl, value l,x2: Number 

time2: Date-time 
y2,value2: Number 
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Query 1: temperature value(s) of a given point 

SELECT value FROM POINT WHERE name="Temperature" and <time,x,y>= 

Query2: areas that had temperatures between 1 and 1.1 degrees 

SELECT time 1 ,time2,jc l ,x 2,y i ,y 2 

WHERE name="Temperature" and value>= 1 and value<=l.l 

4.   APPENDIX: SURROGATES 

Object surrogates 

For some categories in the schema, our main userview contains surrogates, which are strings 
that identify objects of that category. These surrogates are computed virtual attributes; they 
are used in our database languages, e.g. the Semantic SQL. 

The database schema defines semantic keys for some categories. A semantic key of a 
category C is a set of relations and attributes of C that when they all exist (non-null) jointly 
identify the objects of a category. To compute a surrogate from a semantic key we 
concatenate the values of the key attributes and relations of an object, replacing any abstract 
objects in the key relations by their surrogates if the latter exists (otherwise the whole 
surrogate is null). 

For each category C having surrogates, the latter are represented in a virtual attribute: 

□  C-id — attribute of C, range: String   (1:1) 

It is formally defined as follows. 

Let k(C) be the semantic key of C if one is defined in the semantic schema. (If k(C)=(i? \,R2, 
... Rn) it means that there is an integrity constraint: 

for every c1; c2in C: 
for every xlv.., xn in OBJECT: 
if c 1 R l x i and ... and c j Rn xn and c2R\Xx and ... and en Rn xn 
then Cj = c2 

(The relations Rt do not have to be total, unlike keys of relational databases; nor do they have 
to be attributes; they have to be m: 1 or 1:1.) 

We define auxiliary concatenation operator xy: If x or y is null then the result is null. 
Otherwise, the result is concatenation of x and y separated by the character '/'. E.g. 
'abc'|'cde'='abc/cde'. 

The surrogate of an object x, s(x), is defined as follows (null if any part is undefined): 

If x is a string then s(x)=s. 
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If x is a concrete object other than string (number, Boolean, date) then s(x) is a conversion of 
x into a string. 

If x is and abstract object which belongs to only one category, C, for which a semantic key is 
defined in the schema, then: 

Let (Rh ... , Rn) be the alphabetical ordering of the semantic key of C. 

s(x)= s(x.Rl)|s(x.R2)... s(x.Rn) 
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